GCE Electronics ET5 1145-01

All Candidates' performance across questions

?	?	?	?	?	(?)	(?)	<
Question Title	N	Mean	S D	Max Mark	FF	Attempt \%	
1	404	4.9	1.3	6	80.9	100	
2	404	4	2.3	6	66.7	100	
3	404	3.7	2.4	8	45.9	100	
4	403	4	2.8	8	49.6	99.8	
5	403	3.6	1.3	5	72.1	99.8	
6	402	3.8	2	7	54.3	99.5	
7	403	4.1	2.7	8	51	99.8	
8	403	2.4	1.9	6	40	99.8	
9	403	7.3	3.1	11	66.4	99.8	
10	403	2.6	1.8	5	52.7	99.8	

2. The following Boolean expressions control a sequence generator:
$\mathrm{D}_{\mathrm{C}}=\overline{\mathrm{B}}$
$\mathrm{D}_{\mathrm{B}}=\mathrm{A}$
$\oplus \mathrm{C}$
$\mathrm{D}_{\mathrm{A}}=\overline{\mathrm{B}+\mathrm{C}}$
(a) Complete the table for all eight possible output combinations for this sequence generator.

Current Outputs					Next Outputs			
State	C	B	A	$\mathbf{D}_{\mathbf{C}}$	$\mathbf{D}_{\mathbf{B}}$	$\mathbf{D}_{\mathbf{A}}$		
0	0	0	0					
1								
2								
3								
4								
5								
6								
7								

(b) Write down all of the unused states.
\qquad
\qquad
\qquad
(c) Are there any stuck states? If so, identify them.
2. The following Boolean expressions control a sequence generator:
$\mathrm{D}_{\mathrm{C}}=\overline{\mathrm{B}} \quad$ bis 0
$\mathrm{D}_{\mathrm{B}}=\mathrm{A} \oplus \mathrm{C}$ A and C pent depend
$\mathrm{D}_{\mathrm{A}}=\overline{\mathrm{B}+\mathrm{C}}$ both 0
(a) Complete the table for all eight possible output combinations for this sequence generator.

Current Outputs					Next Outputs		
State	C	B	A	D_{C}	D_{B}	D_{A}	
0	0	0	0	1	0	1	
1	1	0	1	1	0	0	
2	1	0	0	1	1	0	
3	1	1	0	0	1	0	
4	0	1	0	0	0	0	
5	0	0	1	1	1	1	
6	1	1	1	0	0	0	
7	0	1	1	0	1	0	

(b) Write down all of the unused states.

Ss: 001
$S_{6}: 111$
S7:OII
(c) Are there any stuck states? If so, identify them.
2. The following Boolean expressions control a sequence generator:
$\mathrm{D}_{\mathrm{C}}=\overline{\mathrm{B}} \quad$ bit 0
$\mathrm{D}_{\mathrm{B}}=\mathrm{A} \oplus \mathrm{C}$ A and C ane deferent 0
$\mathrm{D}_{\mathrm{A}}=\overline{\mathrm{B}+\mathrm{C}}$ both 0
(a) Complete the table for all eight possible output combinations for this sequence generator.

Current Outputs					Next Outputs		
State	C	B	A	D_{C}	D_{B}	D_{A}	
0	0	0	0	1	0	1	
1	1	0	1	1	0	0	
2	1	0	0	1	1	0	
3	1	1	0	0	1	0	
4	0	1	0	0	0	0	
5	0	0	1	1	1	1	
6	1	1	1	0	0	0	
7	0	1	1	0	1	0	

(b) Write down all of the unused states.
[2] 2
55: 001
$S_{6}: 111$

S7:OII
(C) Are there any stuck states? If so, identify them.
2. The following Boolean expressions control a sequence generator:

$$
\mathrm{D}_{\mathrm{C}}=\overline{\mathrm{B}}
$$

$$
\begin{aligned}
& D_{B}=A \oplus C \\
& D_{A}=\overline{B+C}
\end{aligned}
$$

(a) Complete the table for all eight possible output combinations for this sequence generator.

Current Outputs					Next Outputs			
State	C	B	A	D_{C}	D_{B}	D_{A}		
0	0	0	0	1	0	1		
1	1	0	1	1	0	0		
2	1	0	0	1	1	0		
3	1	1	0	0	1	0		
4	0	1	0	0	0	0		
5	0	0	0	1	0	1		
6	1	0	1	1	0	0		
7	1	0	0	1	1	0		

(b) Write down all of the unused states.

001
011, 111 \qquad
\qquad
\qquad
(c) Are there any stuck states? If so, identify them.
No start states

2. The following Boolean expressions control a sequence generator:

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{C}}=\overline{\mathrm{B}} \\
& \mathrm{D}_{\mathrm{B}}=\mathrm{A} \oplus \mathrm{C} \\
& \mathrm{D}_{\mathrm{A}}=\overline{\mathrm{B}+\mathrm{C}}
\end{aligned}
$$

(a) Complete the table for all eight possible output combinations for this sequence generator.

Current Outputs					Next Outputs			
State	C	B	A	\mathbf{D}_{C}	\mathbf{D}_{B}	\mathbf{D}_{A}		
0	0	0	0	1	0	1		
1	1	0	1	1	0	0		
2	1	0	0	1	1	0		
3	1	1	0	0	1	0		
4	0	1	0	0	0	0		
5	0	0	0	0	1	0		
6	1	0	1	1	0	0		
7	1	0	0	1	1	0		

(b) Write down all of the unused states.

001 111 D,
\qquad
\qquad
\qquad
(c) Are there any stuck states? If so, identify them.

$$
\begin{aligned}
& \text { No start states } \\
& 001+ \\
& 011010 \\
& 111
\end{aligned}
$$

2. The following Boolean expressions control a sequence generator:
$D_{C}=\bar{B}$
$D_{B}=A \oplus C$
$D_{a}=\overline{B+C}$
(a) Complete the table for all eight possible output combinations for this sequence generator.

Current Outputs				Next Outputs		
State	C	B	A	D_{C}	$\mathrm{D}_{\text {B }}$	D_{A}
0	0	0	0	1	1	0
1	0	10	1	1	40	1
2	0	1	1	1	40	0
3	0	41	0	1	¢ 1	0
4	I	1	0	0	610	1
5	1	11	1	0	$\bigcirc 1$	1
6	1	10	1	0	1	0
7	,	10	0	0	10	0

(a) White down all of the unused states.
(c) Are there any stuck states? If so, identify them.
2. The following Boolean expressions control a sequence generator:
$D_{C}=\bar{B}$
$D_{B}=A \oplus C$
$D_{\mathrm{a}}=\overline{\mathrm{B}+\mathrm{C}}$
(a) Complete the table for all eight possible output combinations for this sequence generator.

(A) White down all of the unused states.
(c) Are there any stuck states? If so, identify them. 7 日
5. A Gray code encoded disc is used as part of a system to warn a 4×4 off-road enthusiast when the vehicle has tipped to a dangerous angle. As the vehicle tips, the pendulum swings, taking the optoswitches over different segments of the encoded disc.

(a) (i) What is the difference between Gray code and binary code?
\qquad
\qquad
\qquad
\qquad
(ii) What is the disadvantage of using binary code rather than Gray code in this application?
5. A Gray code encoded disc is used as part of a system to warn a 4×4 off-road enthusiast when the vehicle has tipped to a dangerous angle. As the vehicle tips, the pendulum swings, taking the optoswitches over different segments of the encoded disc.

(a) (1) What is the difference between Gray code and binary code?

In gray code, only 1 bit changes at a time. Where as in binary, multiple bits may charge at ins seed time.
(i) What is the disadvantage of using binary code rather than Gray code in this application?
AS a result of multiple bits changing at a tire, false readings can occur. This is heawse the gethifwithes, as seen above, don't read the nextSet of bits at the some time, as in the example, z reds its data lit before x does.
5. A Gray code encoded disc is used as part of a system to warn a 4×4 off-road enthusiast when the vehicle has tipped to a dangerous angle. As the vehicle tips, the pendulum swings, taking the optoswitches over different segments of the encoded disc.

(a) (1) What is the difference between Gray code and binary code?

In gray code, only 1 bit changes at a these. Where as in binary, muitide bits may charge at 1 mesertime.
(i) What is the disadvantage of using binary code rather than Gray code in this application? \square
AS a result of multiple bits changing at a tine, false readings can occur. This is heawse the gethifwithes, as seen above, don't read the nextSet of bits at the some time, as in the example, z rads its data lit before x does.
5. A Gray code encoded disc is used as part of a system to warn a 4×4 off-road enthusiast when the vehicle has tipped to a dangerous angle. As the vehicle tips, the pendulum swings, taking the optoswitches over different segments of the encoded disc.

(a) (i) What is the difference between Gray code and binary code?

Only one bit changes in each gray code step increment to the count. Unlike binary where multiple bits change when the count is incremented.
(ii) What is the disadvantage of using binary code rather than Gray code in this application? was
If binary to be used there would be errors where the ofto-switches read Part of ore value and fort of another ding rotation.
5. A Gray code encoded disc is used as part of a system to warn a 4×4 off-road enthusiast when the vehicle has tipped to a dangerous angle. As the vehicle tips, the pendulum swings, taking the optoswitches over different segments of the encoded disc.

(a) (i) What is the difference between Gray code and binary code?

Only one bit changes in each gray code step increment to the count. Unlike binary where multiple bits change when the count is incremented.
(ii) What is the disadvantage of using binary code rather than Gray code in this application?
If binary was to be used there would be errors white the ofto-switches read fart af ore value and fort of another ding relation. \square
5. A Gray code encoded disc is used as part of a system to warn a 4×4 off-road enthusiast when the vehicle has tipped to a dangerous angle. As the vehicle tips, the pendulum swings, taking the opthswithes over different segments of the encoded disc.

a) What is the difference between Gray code and binary code?

Gray code is done with colours to recognise instructions whereas binary is dione with O 'sand I's in the place. Gray cade offers different uses (ii) What is the disadvantage of using binary code rather than Gray code in this application?
It is harder to recognise O'sand l's when there are white and gray squares to tell you if there is a bacourd. Also you cannot measure how four the car has tipped with binary but its easy with numbers of gray and white squares.
5. A. Gray code encoded disc is used as part of a system to warn a 4×4 off-road enthusiast when the vehicle has tipped to a dangerous angle. As the vehicle tips, the pendulum swings, taking the cuplosuitiches cover different segments of the encoded disc.

What is the difference between Gray code and binary code?
Gray code is done with colours to recognise instructions whenas binary is done with O'sand I's in the place. Gray cade offers different uses x (ii) What is the disadvantage of using binary code rather than Gray code in this application?
It is harder to recognise O'sand l's when there are white and gray squares to tell you if there is a x hazard. Also you cannot measure how four the car has tipped with binary but its easy with numbers of gray and white squares.
(b) (i) Design a filter with these characteristics, incorporating an op-amp, a $7.5 \mathrm{k} \Omega$ resistor, a $150 \mathrm{k} \Omega$ resistor and a capacitor. Complete the following template with your design.
\qquad

\longrightarrow Output

0 V
(ii) Which of these capacitors offers a break frequency closest to 10 kHz ? (Justify your choice with a calculation.)

$$
0.1 \mathrm{nF} \quad 0.47 \mathrm{nF} \quad 1 \mathrm{nF} \quad 2 \mathrm{nF} \quad 4.7 \mathrm{nF} \quad 10 \mathrm{nF}
$$

(b) (i) Design a filter with these characteristics, incorporating an op-amp, a $7.5 \mathrm{k} \Omega$ resistor, a $150 \mathrm{k} \Omega$ resistor and a capacitor. Complete the following template with your design.

(ii) Which of these capacitors offers a break frequency closest to 10 kHz ? (Justify your choice with a calculation.)

$\therefore 0.1 \mathrm{nF}$ capacitor.
(b) (i) Design a filter with these characteristics, incorporating an op-amp, a $7.5 \mathrm{k} \Omega$ resistor, a $150 \mathrm{k} \Omega$ resistor and a capacitor. Complete the following template with your design.

OW
(ii) Which of these capacitors offers a break frequency closest to 10 kHz ? (Justify your choice with a calculation.)

0.1 nF capacitor.
(b) (i) Design a filter with these characteristics, incorporating an op-amp, a $7.5 \mathrm{k} \Omega$ resistor, , $\begin{aligned} & \text { a } 150 \mathrm{k} \Omega \text { resistor and a capacitor. Complete the following template with your design. } \\ & {[3]}\end{aligned}$

(ii) Which of these capacitors offers a break frequency closest to 10 kHz ? (Justify your choice with a calculation.)

(b) (i) Design a filter with these characteristics, incorporating an op-amp, a $7.5 \mathrm{k} \Omega$ resistor,

(ii) Which of these capacitors offers a break frequency closest to 10 kHz ? (Justify your choice with a calculation.)

(b) (i) Design a filter with these characteristics, incorporating an op-amp, a $7.5 \mathrm{k} \Omega$ resistor, only

OW
(ii) Which of these capacitors offers a break frequency closest to 10 kHz ? (Justify your choice with a calculation.)

(b) (i) Design a filter with these characteristics, incorporating an op-amp, a $7.5 \mathrm{k} \Omega$ resistor, a $150 \mathrm{k} \Omega$ resistor and a capacitor. Complete the following template with your design.

OW
(ii) Which of these capacitors offers a break frequency closest to 10 kHz ? (Justify your choice with a calculation.)

\qquad
(b) (I) Design a filter with these characteristics, incorporating an op-amp, a $7.5 \mathrm{k} \Omega$ resistor, a $150 \mathrm{k} \Omega$ resistor and a capacitor. Complete the following template with your design.

(ii) Which of these capacitors offers a break frequency closest to 10 kHz ? (Justify your choice with a calculation.)
$0.1 \mathrm{nF} \quad 0.47 \mathrm{nF} \quad 1 \mathrm{nF} \quad 2 \mathrm{nF} \quad 4.7 \mathrm{nF} \quad 10 \mathrm{nF}$ $\frac{1}{2 \pi R C}=\frac{1}{2 \pi 7.5 \times 2}=10,6 \mathrm{kh}$
(b) (i) Design a filter with these characteristics, incorporating an op-amp, a $7.5 \mathrm{k} \Omega$ resistor, a $150 \mathrm{k} \Omega$ resistor and a capacitor. Complete the following template with your design.

(ii) Which of these capacitors offers a break frequency closest to 10 kHz ? (Justify your choice with a calculation.)
0.1 nF
0.47 nF

1 nF
2 nF
4.7 nF

10 nF

$10,6 \mathrm{kHz}$

